Optimal hedging in discrete time
نویسندگان
چکیده
منابع مشابه
Variance-Optimal Hedging in Discrete Time
We solve the problem of approximating in L2 a given random variable H by stochastic integrals GT (θ) of a given discrete-time process X. We interpret H as a contingent claim to be paid out at time T , X as the price evolution of some risky asset in a financial market, and G(θ) as the cumulative gains from trade using the hedging strategy θ. As an application, we determine the varianceoptimal st...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملDiscrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کاملDiscrete time hedging with liquidity risk
We study a discrete time hedging and pricing problem in a market with liquidity costs. Using Leland’s discrete time replication scheme [Leland, H.E., 1985. Journal of Finance, 1283–1301], we consider a discrete time version of the Black–Scholes model and a delta hedging strategy. We derive a partial differential equation for the option price in the presence of liquidity costs and develop a modi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantitative Finance
سال: 2013
ISSN: 1469-7688,1469-7696
DOI: 10.1080/14697688.2012.745012